Abstract

The clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein 9 (CRISPR/Cas9) genome editing technology is revolutionizing our approach and capability to precisely manipulate the genetic flow of mammalians. The facile programmability of Cas9 protein and guide RNA (gRNA) sequence has recently expanded biomedical application of CRISPR/Cas9 technology from editing mammalian genome to various genetic manipulations. The therapeutic and clinical translation potential of CRISPR/Cas9 genome editing, however, are challenged by its off-target effect and low genome editing efficiency. In this regard, developing new Cas9 variants and conditional control of Cas9/gRNA activity are of great potential for improving genome editing accuracy and on-target efficiency. In this review, we summarize chemical strategies that have been developed recently to engineer the nucleic acid chemistry of gRNA to enhance CRISPR/Cas9 genome editing efficacy, specificity and controllability. This review aims to highlight the endeavor that has been made to solve bottleneck problems in the field of CRISPR/Cas9 and inspire innovative researches to fulfill the gap between bench and bed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call