Abstract
The breakdown of sulphur glycosidic bonds in thioglycosides can produce isothiocyanate, a chemoprotective agent linked to the prevention of cancers; however, only a handful of enzymes have been identified that are k0nown to catalyse this reaction. Structural studies of the myrosinase enzyme, which is capable of hydrolysing the thioglycosidic bond, have identified residues that may play important roles in sulphur bond specific activity. Using rational design, two extremo-adapted β-glycosidases from the species Thermus nonproteolyticus (TnoGH1) and Halothermothrix orenii (HorGH1) were engineered towards thioglycoside substrates. Twelve variants, six for TnoGH1and six for HorGH1, were assayed for activity. Remarkable enhancement of the specificity (kcat/KM) of TnoGH1 and HorGH1 towards β-thioglycoside was observed in the single mutants TnoGH1-V287R (2500M-1s-1) and HorGH1-M229R (13,260M-1s-1) which showed a 3-fold increase with no loss in turnover rate when compared with the wild-type enzymes. Thus, the role of arginine is key to induce β-thioglycosidase activity. Thorough kinetic investigation of the different mutants has shed light on the mechanism of β-glycosidases when acting on the native substrate.Key Points •Key residues were identified in the active site of Brevicoryne brassicae myrosinase. •Rationally designed mutations were introduced into two extremo-adapted β-glycosidases. •β-glycosidases mutants exhibited improved activity against thioglycosidic bonds. •The mutation to arginine in the active site yielded the best variant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.