Abstract

In this study, we designed two deep neural networks to encode 16 features for early seizure detection in intracranial EEG and compared them and their frequency responses to 16 widely used engineered metrics to interpret their properties: epileptogenicity index (EI), phase locked high gamma (PLHG), time and frequency domain Cho Gaines distance (TDCG, FDCG), relative band powers, and log absolute band powers (from alpha, beta, theta, delta, low gamma, and high gamma bands). The deep learning models were pretrained for seizure identification on the time and frequency domains of 1 s, single-channel clips of 127 seizures (from 25 different subjects) using “leave-one-out” (LOO) cross validation. Each neural network extracted unique feature spaces that were interpreted using spectral power modulations before being used to train a Random Forest Classifier (RFC) for seizure identification. The Gini Importance of each feature was calculated from the pretrained RFC, enabling the most significant features (MSFs) for each task to be identified. The MSFs were extracted to train another RFC for UPenn and Mayo Clinic’s Seizure Detection Kaggle Challenge. They obtained an AUC score of 0.93, demonstrating a transferable method to identify and interpret biomarkers for seizure detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.