Abstract

In this paper, we propose a model to describe the geometry of quantum correlations and entanglement through their distinct physical significance in quantum information processing and modern communications. However, geometric discord, using trace, Hilbert–Schmidt distances, and entanglement of formation, is engineered to be a well-defined non-classical correlation measure of an atomic field system. It consists of employing Jaynes–Cummings model to study the interaction between an excited atom at two levels and a single electromagnetic field mode inside an electrodynamic cavity in two cases, namely resonance and non-resonance. In fact, the dynamics of these measures depends decisively on the atom-field initial parameters where, importantly, the field parameters can be specified as control settings to implement an optimal teleportation protocol. The obtained results reveal that the behaviors of teleported geometric quantum discord and entanglement are similar to those displayed for maximum fidelity in terms of fully entanglement fraction. Therefore, since fidelity always exceeds the classical limit, one can design a quantum teleportation scheme with robust fidelity superior to any conventional communication protocol.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call