Abstract

Imbalanced immune regulation leads to the abnormal wound healing process, e.g., chronic unhealing wound or hypertrophic scar formation. Thus, the attenuation of the overflowing inflammatory factors is a viable approach to maintain the homeostatic immune regulation to facilitate normal wound healing.A versatile telodendrimer (TD) nanotrap (NT) platform is developed for efficient biomolecular protein binding. The conjugation of TD NT in size-exclusive biocompatible hydrogel resin allows for topical application for cytokine scavenging. Fine-tuning the TD NT density/valency in hydrogel resin controls resin swelling, optimizes molecular diffusion, and improves cytokine capture for effective immune modulation. The hydrogel with reduced TD NT density allows for higher protein/cytokine adsorption capacity with faster kinetics, due to the reduced barrierof TD NT nano-assembly. The positively charged TD NT hydrogel exhibits superior removal of negatively charged proinflammatory cytokines from the lipopolysaccharide (LPS, a potent endotoxin) primed immune cell culture medium. The negatively charged TD NT hydrogel removes positively charged anti-inflammatory cytokines efficiently from cell culture medium. TD NT hydrogel effectively constrains the local inflammation induced by subcutaneous LPS injection in mice. These results indicate the great potential applications of the engineered TD NT hydrogel as topical immune modulatory treatments to attenuate local inflammation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.