Abstract

Nanorobots are propitious to swim or fly compared with crawling and walking because of issues with desirable characteristics of high velocity, efficiency, specificity, controllability, and a simple propagation mechanism that can be realized with miniaturized parts. Inspired by the fact that microorganisms existing in nature function expeditiously under these circumstances, researchers have shown a great interest to conceptualize, model, analyze, and make micro-/nanosized swimmers (nanorobots) that can move in body fluids for applications such as targeted drug delivery, nanomedication, and in-viscera nanosurgery. The present work compiles modeling of physics as investigated since 1951 of flagellar propulsion in engineering nanorobots. Existing theories in flagellar propulsion such as resistive force theory, slender body theory, Kirchhoff rod theory, bead model, and boundary element method as well as progress in designing the propulsion system of a nanorobot are summarized, and various interdisciplinary aspects of realizing nanorobots and issues in moving nanorobots have been presented chronologically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.