Abstract

HypothesisThe absorption performance and structure of superabsorbents prepared from carboxylated nanocellulose are strongly influenced by the rate of water removal. Their structure can be engineered by changing the drying profile. ExperimentsTEMPO-oxidised nanocellulose superabsorbents were prepared using five different drying techniques, each providing a distinct drying rate. The absorption capacity of deionised water was measured as a function of time and the swelling kinetics was determined, modelled and related to the superabsorbent structure. Superabsorbent phytotoxicity was assessed through seed emergence tests. FindingsThe absorption performance of nanocellulose superabsorbents is controlled by the drying rate. In most cases, drying the nanocellulose superabsorbents via evaporation increases the absorption capacity compared to freeze-dried superabsorbents. The best nanocellulose superabsorbent was the air-dried, absorbing around 230 g water/g dry fibre. The high absorption capacity of the evaporative dried superabsorbents is due to their high pore area which increases the interaction between water molecules and fibres. This leads to a stronger physical entrapment of water by capillary forces. Seed germination studies demonstrated that oven-dried 50 °C superabsorbent increased germination by 40 %. Carboxylated nanocellulose superabsorbents emerge as high-performance renewable materials which can be used extensively in many applications, including agriculture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.