Abstract

Construction of the desired morphology and nanointerface to expose the active sites and modulate the electronic structure offers an effective approach to boosting urea splitting for energy-saving hydrogen generation. Herein, we fabricate a Ni/WO3 Mott-Schottky heterojunction electrocatalyst with a hedgehog-like structure supported on Ni foam toward alkaline urea splitting. Different Ni/WO3 morphologies, such as microspheres, hedgehog-like structures, octahedrons, and cubes, were obtained when various ratios of Ni/W feeds were used. The Mott-Schottky nanointerfaces between Ni and WO3 domains are visually confirmed by high-resolution transmission electron microscopy images, which also accelerated the charge transfer rate. Benefiting from the high electrochemically active surface area and enhanced charge transferability, the optimal Ni/WO3 electrode exhibits outstanding catalytic activity toward hydrogen generation with a low overpotential of 163 mV at 100 mA cm-2 in alkaline solution and reduced cell voltage of 1.67 V when coupled with urea oxidation reaction. Theoretical calculations reveal that the Ni sites in Ni/WO3 optimize the H adsorption energy (ΔGH*) with the |ΔGH*| value of 0.097 eV, much lower than that of Ni (0.35 eV) and WO3 (0.235 eV). This work demonstrates important guidance in designing an efficient electrocatalyst for urea splitting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call