Abstract
Insufficient oxygenation is a key obstacle in the design of clinically scalable tissue-engineered grafts. In this work, an oxygen-generating composite material, termed OxySite, is created through the encapsulation of calcium peroxide (CaO2 ) within polydimethylsiloxane and formulated into microbeads for ease in tissue integration. Key material parameters of reactant loading, porogen addition, microbead size, and an outer rate-limiting layer are modulated to characterize oxygen generation kinetics and their suitability for cellular applications. In silico models are developed to predict the local impact of different OxySite microbead formulations on oxygen availability within an idealized cellular implant. Promising OxySite microbead variants are subsequently coencapsulated with murine β-cells within macroencapsulation devices, resulting in improved cellular metabolic activity and function under hypoxic conditions when compared to controls. Additionally, the coinjection of optimized OxySite microbeads with murine pancreatic islets within a confined transplant site demonstrates ease of integration and improved primary cell function. These works highlight the broad translatability delivered by this new oxygen-generating biomaterial format, whereby the modularity of the material provides customization of the oxygen source to the specific needs of the cellular implant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Advanced healthcare materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.