Abstract

In the present study, we introduce a novel approach to control and modulate fluid transport inside microfluidic papers using lab-engineered paper sheets. Lab-sheets consisting of different fiber sources (eucalyptus sulfate and cotton linters pulp) and varying porosities were designed and further modified with small millimeter-scaled channels using hydrophobic barriers consisting of fiber-attached, hydrophobic polymers. The capillary-driven transport of an aqueous solution was monitored visually, and the influence of parameters such as fiber source, paper grammage, and channel width on the flow rates through the channel was investigated. The experimental results were compared with those obtained with commercially available filter papers. Our findings suggest that accurate control of fluid transport processes with standard filter papers is complex. Additionally, if the channel width is smaller than the mean fiber length, flow rates become dependent on the geometric parameters of the channel because of the formation of dead-end pores at the hydrophobic barriers. Finally, control of the paper sheets porosity, by varying the fiber density of the lab-made paper, affords the fabrication of chemically identical sheets whereby capillary flow is largely influenced and can be modulated accordingly by simple papermaking processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call