Abstract
SummaryIn the last 15 years, outstanding progress has been made in understanding the function of meiotic genes in the model dicot and monocot plants Arabidopsis and rice (Oryza sativa L.), respectively. This knowledge allowed to modulate meiotic recombination in Arabidopsis and, more recently, in rice. For instance, the overall frequency of crossovers (COs) has been stimulated 2.3‐ and 3.2‐fold through the inactivation of the rice FANCM and RECQ4 DNA helicases, respectively, two genes involved in the repair of DNA double‐strand breaks (DSBs) as noncrossovers (NCOs) of the Class II crossover pathway. Differently, the programmed induction of DSBs and COs at desired sites is currently explored by guiding the SPO11‐1 topoisomerase‐like transesterase, initiating meiotic recombination in all eukaryotes, to specific target regions of the rice genome. Furthermore, the inactivation of 3 meiosis‐specific genes, namely PAIR1, OsREC8 and OsOSD1, in the Mitosis instead of Meiosis (MiMe) mutant turned rice meiosis into mitosis, thereby abolishing recombination and achieving the first component of apomixis, apomeiosis. The successful translation of Arabidopsis results into a crop further allowed the implementation of two breakthrough strategies that triggered parthenogenesis from the MiMe unreduced clonal egg cell and completed the second component of diplosporous apomixis. Here, we review the most recent advances in and future prospects of the manipulation of meiotic recombination in rice and potentially other major crops, all essential for global food security.
Highlights
Rice is a staple food for more than half of mankind
It is estimated that current rice production should be raised by 50% to meet the demand for the 2050 world population, which will mainly occur in rice-eating countries (Alexandratos and Bruinsma, 2012)
Recent breakthroughs were made in the manipulation of meiotic recombination in the model plant rice
Summary
In the last 15 years, outstanding progress has been made in understanding the function of meiotic genes in the model dicot and monocot plants Arabidopsis and rice (Oryza sativa L.), respectively. This knowledge allowed to modulate meiotic recombination in Arabidopsis and, more recently, in rice. The programmed induction of DSBs and COs at desired sites is currently explored by guiding the SPO11-1 topoisomerase-like transesterase, initiating meiotic recombination in all eukaryotes, to specific target regions of the rice genome. The inactivation of 3 meiosis-specific genes, namely PAIR1, OsREC8 and OsOSD1, in the Mitosis instead of Meiosis (MiMe) mutant turned rice meiosis into mitosis, thereby abolishing recombination and achieving the first component of apomixis, apomeiosis. We review the most recent advances in and future prospects of the manipulation of meiotic recombination in rice and potentially other major crops, all essential for global food security
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.