Abstract

This study presents a novel approach using polyol-based proliposome to produce marine phospholipids nanoliposomes. Proliposomes were formulated by blending glycerol with phospholipids across varying mass ratios (2:1 to 1:10) at room temperature. Analysis employing polarized light microscopy, FTIR, and DSC revealed that glycerol disrupted the stacked acyl groups within phospholipids, lowering the phase transition temperature (Tm). Krill oil phospholipids (KOP) proliposomes exhibited superior performance in nanoliposomes formation, with a mean diameter of 125.60 ± 3.97 nm, attributed to the decreased Tm (−7.64 and 7.00 °C) compared to soybean phospholipids, along with a correspondingly higher absolute zeta potential (−39.77 ± 1.18 mV). The resulting KOP proliposomes demonstrated liposomes formation stability over six months and under various environmental stresses (dilution, thermal, ionic strength, pH), coupled with in vitro absorption exceeding 90 %. This investigation elucidates the mechanism behind glycerol-formulated proliposomes and proposes innovative strategies for scalable, solvent-free nanoliposome production with implications for functional foods and pharmaceutical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call