Abstract
Large domains of two-dimensional supramolecular porous nanostructures are interesting for various applications from electronics to biology. Here, we investigate the formation of Cu-coordinated networks on Cu(111) using scanning tunneling microscopy and density functional theory (DFT). We consider two molecules with three pyridyl end groups connected to a central benzene ring by either one or two phenyl groups, namely 1,3,5-tris[4-(pyridin)phenyl]benzene (TPyPB) and 1,3,5-tris[4-(pyridin)-[1,1’-biphenyl]benzene (TPyPPB), respectively. Upon deposition of TPyPB at room temperature, a honeycomb nanostructure forms, which is stabilized by Cu adatoms, as previously seen. Upon deposition at 400 K, the growth dynamics change, and molecules become trapped in the hexagonal pores. In contrast, deposition of TPyPPB at room temperature leads to vitreous structures, which rearrange at 400 K forming a low-defect and extended ordered honeycomb phase, which is also stabilized only in the presence of Cu adatoms. The DFT calculations for both honeycomb phases show an impressive agreement with the experimental results, considering the size of such structures. After annealing at 420 K, a complex flower-like structure composed of a mix of two- and three-fold coordinated Cu centers emerges. Further annealing to above 420 K leads to another new phase composed of a high molecular density motif, the so-called diamond phase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.