Abstract

All-printed flexible micro-supercapacitors (MSCs) based on two-dimensional (2D) nanomaterials with in-plane interdigital configurations are regarded as promising miniaturized power source units, but they chronically suffer from self-aggregation and inadequate matching of electrode materials, thus resulting in inefficient electrolyte ions intercalation. Herein, an innovative multicomponent interlaced architecture essentially consisting of 2-amino-8-naphthol 6-sulfonic acid (ANS)-anchored pristine graphene and highly conductive multiwalled carbon nanotubes is reported. The assembled and optimized Gr@ANS electrodes offer sufficient absorption/desorption and redox-active sites, delivering a high areal capacitance of 33.7 mF/cm2 for screen-printed MSCs. Particularly, the well-modified Gr@ANS/CNTs-interlaced complex structure effectively prevents the usual restacking of the delaminated Gr@ANS nanosheets and maximizes ion accessibility in electrodes. Ascribed to the optimized electron-transferring kinetics, the achieved Gr@ANS/CNTs MSCs exhibit excellent capacitance (40.2 mF/cm2 and 18.8 F/cm3), simultaneously significantly increasing the rate capability of Gr@ANS MSCs (from 3.9 to 60.0%). Arising from the multicomponent synergism, the all-solid-state MSCs exhibit outstanding bending stability and cycling performance (73.8% after 10 000 charge/discharge cycles). The new charge reservoir engineering evidenced in graphene-based micro-supercapacitors would serve as a stepping stone toward the scalable manufacture of hybrid energy storage micro-devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call