Abstract
The application of enzyme-like molybdenum disulfide (MoS2) in tissue repair was confronted with stable dispersion, solubilization, and biotoxicity. Here, the injectable self-healing hydrogel was successfully designed using a step-by-step coassembly of chitosan and MoS2. Polyphenolic chitosan as a "structural stabilizer" of MoS2 nanosheets reconstructed well-dispersed MoS2@CSH nanosheets, which improved the biocompatibility of traditional MoS2, and strengthened its photothermal conversion and enzyme-like activities, guaranteeing highly efficient radical scavenging and antimicrobial properties. Furthermore, the polyphenol chitosan was employed again as a "molecular cross-linking agent" to form the injectable NIR-responsive MoS2@CSH hydrogel by accelerating hydrogen-bond interaction among chitosan and the multicross-linking reaction among polyphenols. The rapid self-healing ability was conducive to wound closure and dynamic adaptability. An experimental study on infected wound healing demonstrated that MoS2@CSH hydrogel could substantially eradicate bacteria and accelerate the angiogenesis of infected wounds. The photothermal-driven coassembly of MoS2 and polycation provided an alternative strategy for infected wound healing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.