Abstract

Hydrogel adhesion inherently relies on engineering the contact surface at soft and hydrated interfaces. Upon contact, adhesion normally occurs through the formation of chemical or physical interactions between the disparate surfaces. The ability to form these adhesion junctions is challenging for hydrogels as the interfaces are wet and deformable and often contain low densities of functional groups. In this Review, we link the design of the binding chemistries or adhesion junctions, whether covalent, dynamic covalent, supramolecular, or physical, to the emergent adhesive properties of soft and hydrated interfaces. Wet adhesion is useful for bonding to or between tissues and implants for a range of biomedical applications. We highlight several recent and emerging adhesive hydrogels for use in biomedicine in the context of efficient junction design. The main focus is on engineering hydrogel adhesion through molecular design of the junctions to tailor the adhesion strength, reversibility, stability, and response to environmental stimuli.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.