Abstract

The generation of functional skeletal muscle tissues from human pluripotent stem cells (hPSCs) has not been reported. Here, we derive induced myogenic progenitor cells (iMPCs) via transient overexpression of Pax7 in paraxial mesoderm cells differentiated from hPSCs. In 2D culture, iMPCs readily differentiate into spontaneously contracting multinucleated myotubes and a pool of satellite-like cells endogenously expressing Pax7. Under optimized 3D culture conditions, iMPCs derived from multiple hPSC lines reproducibly form functional skeletal muscle tissues (iSKM bundles) containing aligned multi-nucleated myotubes that exhibit positive force–frequency relationship and robust calcium transients in response to electrical or acetylcholine stimulation. During 1-month culture, the iSKM bundles undergo increased structural and molecular maturation, hypertrophy, and force generation. When implanted into dorsal window chamber or hindlimb muscle in immunocompromised mice, the iSKM bundles survive, progressively vascularize, and maintain functionality. iSKM bundles hold promise as a microphysiological platform for human muscle disease modeling and drug development.

Highlights

  • The generation of functional skeletal muscle tissues from human pluripotent stem cells has not been reported

  • Two human pluripotent stem cells (hPSCs) lines were used for detailed characterization of myogenic differentiation, an H9 hES cell line and a transgene-free hiPS cell line (TRiPS) from the Duke iPSC Shared Resource Facility (Supplementary Fig. 1)

  • Using four distinct hPSC sources, we developed a reproducible method to generate expandable myogenic progenitors, termed induced myogenic progenitor cells (iMPCs), capable of highly efficient differentiation into multinucleated myotubes in 2D cell culture

Read more

Summary

Introduction

The generation of functional skeletal muscle tissues from human pluripotent stem cells (hPSCs) has not been reported. Large-scale physiological and drug screening studies would require a readily available and expandable source of muscle progenitor cells[5] as well as 3D culture conditions leading to formation of biomimetic muscle tissues capable of electrically and chemically induced force generation. We recently reported the first engineering of functional 3D muscle tissues (“myobundles”) made from primary human myoblasts that displayed physiological force generation and calcium (Ca2+) transients in response to electrical and biochemical stimulation[6]. These biomimetic muscle equivalents responded like native muscle to drugs that promote or decrease muscle function demonstrating the utility as a drug-screening tool.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.