Abstract

It is well-recognized that, the inferior fire safety has been the stumbling block for the extensive usages of bismaleimide resin (BMI). Hence, a ternary hierarchical MXenes-based nanoarchitecture (CMAMX) is rationally engineered, towards suppressing the heat and toxicants emissions of BMI. By incorporating 2.0 wt% CMAMX, the marked reductions of 36.5%, 32.9%, 33.5%, 29.2% on peak heat release rate, total heat release, peak smoke production rate, total smoke production are observed. Moreover, the peak CO production rate and peak CO2 production rate are decreased by 40.0% and 54.0%. Additionally, TG-IR test offers evidences for the impeded releases of NO and HCN gases. These results strongly corroborate the strength of CMAMX in impairing the heat and toxicants generations of BMI. Interestingly, the improved mechanical properties are acquired after using CMAMX, deriving from the multiple hydrogen bond interactions and induced nanoconfinement effect. For instance, the tensile toughness is promoted by 50.7%. Briefly, this contribution may be encouraging for the engineering of MXenes-based nanostructure, towards constructing high-performance polymer composites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call