Abstract

Artificially designed heterostructures formed by close conjunctions of plasmonic metal nanoparticles (PNPs) and non-plasmonic (2D) lamellar nanostructures are receiving extensive interest. The synergistic interactions of the nanounits induce the manifestation of localized surface plasmon resonance (LSPR) in plasmonic metals in the specific environment of the 2D-light absorbing matrix, impacting their potential in plasmon enhanced catalysis. Specifically, layered double hydroxides (LDH) with the advantages of their unique 2D-layered structure, tuned optical absorption, ease of preparation, composition diversity, and high surface area, have emerged as very promising candidates for obtaining versatile and robust catalysts. In this review, we cover the available PNPs/LDH heterostructures, from the most used noble-metals plasmonic of Au and Ag to the novel non-noble-metals plasmonic of Cu and Ni, mainly focusing on their synthesis strategies toward establishing a synergistic response in the coupled nanounits and relevant applications in plasmonic catalysis. First, the structure–properties relationship in LDH, establishing the desirable features of the 2D-layered matrix facilitating photocatalysis, is shortly described. Then, we address the recent research interests toward fabrication strategies for PNPs/support heterostructures as plasmonic catalysts. Next, we highlight the synthesis strategies for available PNPs/LDH heterostructures, how these are entangled with characteristics that enable the manifestation of the plasmon-induced charge separation effect (PICS), co-catalytic effect, or nanoantenna effect in plasmonic catalysis with applications in energy related and environmental photocatalysis. Finally, some perspectives on the challenges and future directions of PNPs/LDHs heterostructures to improve their performance as plasmonic catalysts are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call