Abstract
Halomonas bluephagenesis, a robust and contamination-resistant microorganism has been developed as a chassis for āNext Generation Industrial Biotechnologyā. The non-model H. bluephagenesis requires efficient tools to fine-tune its metabolic fluxes for enhanced production phenotypes. Here we report a highly efficient gene expression regulation system (PrrF1-2-HfqPa) in H. bluephagenesis, small regulatory RNA (sRNA) PrrF1 scaffold from Pseudomonas aeruginosa and a target-binding sequence that downregulate gene expression, and its cognate P. aeruginosa Hfq (HfqPa), recruited by the scaffold to facilitate the hybridization of sRNA and the target mRNA. The PrrF1-2-HfqPa system targeting prpC in H. bluephagenesis helps increase 3-hydroxyvalerate fraction in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) to 21 mol% compared to 3.1 mol% of the control. This sRNA system repressed phaP1 and minD simultaneously, resulting in large polyhydroxybutyrate granules. Further, an sRNA library targeting 30 genes was employed for large-scale target identification to increase mevalonate production. This work expands the study on using an sRNA system not based on Escherichia coli MicC/SgrS-Hfq to repress gene expression, providing a framework to exploit new powerful genome engineering tools based on other sRNAs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.