Abstract

Gluconobacter is a potential strain for single-step production of 2-keto-L-gulonic acid (2-KLG), which is the direct precursor of vitamin C. Three dehydrogenases, namely, sorbitol dehydrogenase (SLDH), sorbose dehydrogenase (SDH), and sorbosone dehydrogenase (SNDH), are involved in the production of 2-KLG from D-sorbitol. In the present study, the potential SNDH/SDH gene cluster in the strain Gluconobacter cerinus CGMCC 1.110 was mined by genome analysis, and its function in transforming L-sorbose to 2-KLG was verified. Proteomic analysis showed that the expression level of SNDH/SDH had a great influence on the titer of 2-KLG, and fermentation results showed that SDH was the rate-limiting enzyme. A systematic metabolic engineering process, which was theoretically suitable for increasing the titer of many products involving membrane-bound dehydrogenase from Gluconobacter, was then performed to improve the 2-KLG titer in G. cerinus CGMCC 1.110 from undetectable to 51.9g/L in a 5-L bioreactor after fermentation optimization. The strategies used in this study may provide a reference for mining other potential applications of Gluconobacter. KEY POINTS: • The potential SNDH/SDH gene cluster in G. cerinus CGMCC 1.110 was mined. • A systematic engineering process was performed to improve the titer of 2-KLG. • The 2-KLG titer was successfully increased from undetectable to 51.9g/L.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call