Abstract

Calcium-dependent or C-type carbohydrate-recognition domains are homologous protein modules found in a variety of animal lectins. Selective binding of sugars by these domains is essential for glycoprotein clearance, cell-cell adhesion and pathogen neutralization. Although various C-type carbohydrate-recognition domains share sequence identity ranging from 20 to 55%, their sugar-binding characteristics vary widely. The structure of a mannose-binding carbohydrate-recognition domain in complex with a saccharide ligand suggests that two glutamic acid-asparagine pairs are essential determinants of ligand binding by this domain. In C-type lectins that bind galactose with higher affinity than mannose, one of these pairs is replaced by glutamine-aspartic acid. Here we shift the sequence of the mannose-binding protein to correspond to that found in galactose-binding domains in order to test the importance of these residues in sugar-binding selectivity. This simple switch in the position of a single amide group alters the binding activity of the domain so that galactose becomes the preferred ligand.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call