Abstract

Hepatic tissue engineering using primary hepatocytes has been considered a valuable new therapeutic modality for several classes of liver diseases. Recent progress in the development of clinically feasible liver tissue engineering approaches, however, has been hampered mainly by insufficient cell-to-cell contact of the engrafted hepatocytes. We developed a method to engineer a uniformly continuous sheet of hepatic tissue using isolated primary hepatocytes cultured on temperature-responsive surfaces. Sheets of hepatic tissue transplanted into the subcutaneous space resulted in efficient engraftment to the surrounding cells, with the formation of two-dimensional hepatic tissues that stably persisted for longer than 200 d. The engineered hepatic tissues also showed several characteristics of liver-specific functionality. Additionally, when the hepatic tissue sheets were layered in vivo, three-dimensional miniature liver systems having persistent survivability could be also engineered. This technology for liver tissue engineering is simple, minimally invasive and free of potentially immunogenic biodegradable scaffolds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.