Abstract

BackgroundRecent advancements in 3-dimensional patient-derived organoid models have revolutionized the field of cancer biology. There is an urgent need for development of endocrine tumor organoid models for medullary thyroid carcinoma, adrenocortical carcinoma, papillary thyroid carcinoma, and a spectrum of benign hyperfunctioning parathyroid and adrenal neoplasms. We aimed to engineer functionally intact 3-dimensional endocrine patient-derived organoids to expand the in vitro and translational applications for the advancement of endocrine research. MethodsUsing our recently developed fine needle aspiration–based methodology, we established patient-derived 3-dimensional endocrine organoid models using prospectively collected human papillary thyroid carcinoma (n = 6), medullary thyroid carcinoma (n = 3), adrenocortical carcinoma (n = 3), and parathyroid (n = 5). and adrenal (n = 5) neoplasms. Multiplatform analyses of endocrine patient-derived organoids and applications in oncoimmunology, near-infrared autofluorescence, and radiosensitization studies under 3-dimensional in vitro conditions were performed. ResultsWe have successfully modeled and analyzed the complex endocrine microenvironment for a spectrum of endocrine neoplasms in 3-dimensional culture. The endocrine patient-derived organoids recapitulated complex tumor microenvironment of endocrine neoplasms morphologically and functionally and maintained cytokine production and near-infrared autofluorescence properties. ConclusionOur novel engineered endocrine patient-derived organoid models of thyroid, parathyroid and adrenal neoplasms represent an exciting and elegant alternative to current limited 2-dimensional systems and afford future broad multiplatform in vitro and translational applications, including in endocrine oncoimmunology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call