Abstract

Coupled elliptic quantum dots with different aspect ratios containing up to two electrons are studied using a model confinement potential in the presence of magnetic fields. Single and two-particle Schrodinger equations are solved using numerical exact diagonalization to obtain the exchange energy and chemical potentials. As the ratio between the confinement strengths in directions perpendicular and parallel to the coupling direction of the double dots increases, the exchange energy at zero magnetic field increases, while the magnetic field of the singlet-triplet transition decreases. By investigating the charge stability diagram, we find interdot quantum mechanical coupling increases with the dot aspect ratio, whereas the electrostatic coupling between the two dots remains nearly constant. With increasing interdot detuning, the absolute value of the exchange energy increases superlinearly followed by saturation. This behavior is attributed to the electron density differences between the singlet and triplet states in the asymmetric QD systems

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.