Abstract

The Two-component Regulatory System (TCS) is the primary mode that bacteria use to continuously sense the environment. A TCS is comprised of a periplasmic sensor Histidine kinase (HK) domain and a cytoplasmic Response regulator (RR) domain. The HK domain phosphorylates the RR domain to activate the effector gene expression. Utilizing a rational approach, the sensor HK was genetically engineered in Escherichia coli to create chimeric HK, by a rewiring or domain swapping strategy. Apart from the wild-type characteristics, chimeric HK imparts novel or the desired characteristics and ability to genetically engineered E. coli for its adaptation and survival. This review focuses on the design, potential applications, and future perspectives of chimeric HKs used as high throughput screening biosensors of various compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.