Abstract

Native to propionibacteria, the Wood-Werkman cycle enables propionate production via succinate decarboxylation. Current limitations in engineering propionibacteria strains have redirected attention toward the heterologous production in model organisms. Here, we report the functional expression of the Wood-Werkman cycle in Escherichia coli to enable propionate and 1-propanol production. The initial proof-of-concept attempt showed that the cycle can be used for production. However, production levels were low (0.17 mM). In silico optimization of the expression system by operon rearrangement and ribosomal-binding site tuning improved performance by fivefold. Adaptive laboratory evolution further improved performance redirecting almost 30% of total carbon through the Wood-Werkman cycle, achieving propionate and propanol titers of 9 and 5 mM, respectively. Rational engineering to reduce the generation of byproducts showed that lactate (∆ldhA) and formate (∆pflB) knockout strains exhibit an improved propionate and 1-propanol production, while the ethanol (∆adhE) knockout strain only showed improved propionate production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.