Abstract

Microbial biosynthesis of free fatty acids (FFAs) can be achieved by introducing an acyl-acyl carrier protein thioesterase gene into Escherichia coli. The engineered E. coli usually produced even chain FFAs. In this study, propionyl-CoA synthetase (prpE) from Salmonella enterica was overexpressed in two efficient even chain FFAs producers, ML103 (pXZM12) carrying the acyl-ACP thioesterase gene from Umbellularia californica and ML103 (pXZ18) carrying the acyl-ACP thioesterase gene from Ricinus communis combined with supplement of extracellular propionate. With these metabolically engineered E. coli, the odd straight chain FFAs, undecanoic acid (C11:0), tridecanoic acid (C13:0), and pentadecanoic acid (C15:0) were produced from glucose and propionate. The highest total odd straight chain FFAs produced by ML103 (pXZM12, pBAD-prpE) reached 276 mg/l with a ratio of 23.43 % of the total FFAs. In ML103 (pXZ18, pBAD-prpE), the highest total odd straight chain FFAs accumulated to 297 mg/l, and the ratio reached 17.68 % of the total FFAs. Due to the different substrate specificity of the acyl-ACP thioesterases, the major odd straight chain FFA components of ML103 (pXZM12, pBAD-prpE) were undecanoic acid and tridecanoic acid, while the ML103 (pXZ18, pBAD-prpE) preferred pentadecanoic acid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.