Abstract
Electro-optic (EO) modulators provide electrical-to-optical signal conversion relevant to optical communications. Barium titanate (BaTiO3 ) is a promising material system for EO modulation in light of its optical ultrafast nonlinearity, low optical loss, and high refractive index. To enhance further its spontaneous polarization, BaTiO3 can be doped at the Ba and Ti sites; however, doping is often accompanied by ion migration, which diminishes EO performance. Here, donor-acceptor doping and its effect on EO efficiency are investigated, finding that La-doped BaTiO3 achieves an EO coefficient of 42 pm V-1 at 1kHz, fully twice that of the pristine specimen; however, it is also observed that, with this single-element doping, the EO response falls off rapidly with frequency. From impedance spectroscopy, it is found that frequency-dependent EO is correlated with ion migration. Density functional theory calculations predict that the ion-migration barrier decreases with La3+ doping but can be recovered with further Mn2+ doping, a finding that prompts to prevent ion migration by incorporating Mn2+ into the Ti-site to compensate for the charge imbalance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.