Abstract

We created a generalizable pipeline for antibiotic-resistance-gene-free plasmid (ARGFP)-based cloning using a dual auxotrophic- and essential-gene-based selection strategy. We use auxotrophic selection to construct plasmids in engineered E.coli DH10B cloning strains and both auxotrophic- and essential-gene-based selection to (1) select for recombinant strains and (2) maintain a plasmid in E.coli Nissle 1917, a common chassis for engineered probiotic applications, and E.coli MG1655, the laboratory "wild-type" E.coli strain. We show that our approach has comparable efficiency to that of antibiotic-resistance-gene-based cloning. We also show that the double-knockout Nissle and MG1655 strains are simple to transform with plasmids of interest. Notably, we show that the engineered Nissle strains are amenable to long-term plasmid maintenance in repeated culturing as well as in the mouse gut, demonstrating the potential for broad applications while minimizing the risk of antibiotic resistance spread via horizontal gene transfer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.