Abstract

We present an experimental and in silico investigation of path selection by a single droplet inside a tertiary-junction microchannel using oil-in-water as a model system. The droplet was generated at a T-junction inside a microfluidic chip, and its flow behavior as a function of droplet size, streamline position, viscosity, and Reynolds number (Re) of the continuous phase was studied downstream at a tertiary junction having perpendicular channels of uniform square cross section and internal fluidic resistance proportional to their lengths. Numerical studies were performed using the multicomponent lattice Boltzmann method. Both the experimental and numerical results showed good agreement and suggested that at higher Re equal to 3, the flow was dominated by inertial forces resulting in the droplets choosing a path based on their center position in the flow streamline. At lower Re of 0.3, the streamline-assisted path selection became viscous force-assisted above a critical droplet size. As the Re was further reduced to 0.03, or when the viscosity of the dispersed phase was increased, the critical droplet size for transition also decreased. This multivariate approach can in future be used to engineer sorting of cells, e.g., circulating tumor cells (CTCs) allowing early-stage detection of life-threatening diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.