Abstract

Molecular optical probes paly pivotal roles in in vivo imaging of biomarkers associated to kidney diseases. Relying on structural tunability and high fluorescence quantum yields, versatile optical probes have been constructed on cyanine or hemicyanine-based scaffold in recent years. This review summaries the recent progress on the development of optical probes for imaging of kidney diseases, particularly through near-infrared fluorescence, chemiluminescence and photoacoustic imaging modalities. The chemical design and sensing mechanisms are discussed along with applications in the detection of renal cell carcinoma and acute kidney injury. This progress provides insights and directions for the development of next generation kidney-targeted probes and for pushing their further applications in preclinical and clinical research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call