Abstract
Pathogenic Escherichia coli and Salmonella enterica pose serious public health threats due to their ability to cause severe gastroenteritis and life-threatening sequela, particularly in young children. Moreover, the emergence and dissemination of antibiotic resistance in these bacteria have complicated control of infections. Alternative strategies that effectively target these enteric pathogens and negate or reduce the need of antibiotics are urgently needed. Such an alternative is the CRISPR-Cas9 system because it can generate sequence-specific lethal double stranded DNA breaks. In this study, two self-transmissible broad host range conjugative plasmids, pRK24 and pBP136, were engineered to deliver multiplexed CRSIPR-Cas9 systems that specifically target Enterohemorrhagic and Enteropathogenic strains of E. coli (EHEC and EPEC), S. enterica, and blaCMY-2 antibiotic resistance plasmids. Using in vitro mating assays, we show that the conjugative delivery of pRK24-CRISPR-Cas9 carrying guide RNAs to the EPEC/EHEC eae (intimin) gene can selectively kill enterohemorrhagic E. coli O157 eae+ cells (3 log kill at 6 h) but does not kill the isogenic Δeae mutant (P<0.001). Similar results were also obtained with a pBP136 derivative, pTF16, carrying multiplexed guide RNAs targeting E. coli eae and the S. enterica ssaN gene coding for the type III secretion ATPase. Another pBP136 derivative, TF18, carries guide RNAs targeting S. enterica ssaN and the antibiotic resistance gene, blaCMY-2, carried on the multi-drug resistant pAR06302. Introduction of pTF18 into bacteria harboring pAR06302 showed plasmids were cured at an efficiency of 53% (P<0.05). Using a murine neonate EPEC infection model, pTF16 was delivered by a murine derived E. coli strain to EPEC infected mice and showed significant reductions of intestinal EPEC (P<0.05). These results suggest that establishing conjugative CRISPR-Cas9 antimicrobials in the intestinal microbiome may provide protection from enteric pathogens and reduce antibiotic resistance without disrupting the normal microbiota.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.