Abstract

The development of efficient electrocatalysts for overall water splitting is important for future renewable energy systems. Herein, macroporous CoO covered by Co/N-doped graphitic carbon nanosheet arrays (mac-CoO@Co/NGC NSAs) were constructed by engineering a mesoporous CoO nanowire (mes-CoO NWAs) core with highly conductive Co nanoparticles coated by a N-doped graphitic carbon (Co/NGC) shell. The in situ derived Co/NGC shell not only introduces electrocatalytic active sites for the hydrogen evolution reaction (HER) but also promotes the oxygen evolution reaction (OER) through the strong interaction between the CoO core and the Co/NGC shell. Moreover, the highly conductive Co/NGC shell crosslinks the isolated mesoporous CoO nanowires into a nanosheet rich in macropores, ensuring effective electron and mass transfer. Furthermore, the chemically stable N-doped graphitic carbon layer and physically stable hierarchical nanosheet arrays ensure the stability of the catalyst. Owing to the desirable interfaces and pore architecture, the as-prepared mac-CoO@Co/NGC NSAs can serve as highly effective, binder-free electrocatalysts for overall water splitting with a stable cell voltage of 1.62 V at 10 mA cm-2 for 35 h.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.