Abstract
Transition metal oxides (TMOs) have been recognized as promising sensing materials for heavy metal ions (HMIs) detection, mainly ascribing to a strong adsorption of HMIs on surface oxygen vacancies (OVs) of TMOs. However, the possibly more prominent role of valence change induced redox activity of TMOs in HMIs detection has not received its deserved attention, thus severely hindering the further development of TMOs-based HMIs detection. Herein, a facile strategy is proposed to co-engineer the redox activity and surface OVs of porous Co3O4 nanosheets by Ni doping. As a result, a boosted redox activity and an enhanced adsorption have been simultaneously achieved by optimizing the Ni doping level. Specifically, the 5% (atomic ratio) Ni-doped Co3O4 nanosheets exhibited best electroanalytical performance towards toxic Hg(II). More importantly, it has been demonstrated that the valence change cycle of Co cations (Co2+/Co3+) plays a more important role in electrochemical detection, rather than the adsorption of Hg(II) on OVs. Namely, the reduction of Hg(II) to Hg(0) on Co3O4 nanosheets can be effectively promoted by Ni-doping facilitated valence change cycle of Co cations (Co2+/Co3+). This work provides a feasible way to develop TMOs-based sensing materials by energetically synergizing their redox activity and adsorption ability towards HMIs simultaneously.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.