Abstract

Magnetic orders characterized by multiple ordering vectors harbor noncollinear and noncoplanar spin textures and can be a source of unusual electronic properties through the spin Berry phase mechanism. We theoretically show that such multiple-$Q$ states are stabilized in itinerant magnets in the form of superpositions of collinear up-up-down-down (UUDD) spin states, which accompany the density waves of vector and scalar chirality. The result is drawn by examining the ground state of the Kondo lattice model with classical localized moments, especially when the Fermi surface is tuned to be partially nested by the symmetry-related commensurate vectors. We unveil the instability toward the multiple-$Q$ UUDD states with chirality density waves, using the perturbative theory, variational calculations, and large-scale Langevin dynamics simulations. We also show that the chirality density waves can induce rich nontrivial topology of electronic structures, such as the massless Dirac semimetal, Chern insulator with quantized topological Hall response, and peculiar edge states which depend on the phase of chirality density waves at the edges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.