Abstract

ConspectusCells, particularly living cells, serve as natural carriers of bioactive substances. Their inherent low immunogenicity and multifunctionality have garnered significant attention in the realm of disease treatment applications, specifically within the domains of cancer immunotherapy and regenerative tissue repair. Nevertheless, several prominent challenges impede their swift translation into clinical applications, including obstacles related to large-scale production feasibility and high utilization costs. To address these issues comprehensively, researchers have proposed the notion of bionic cells that are synthetically generated through chemical or biosynthetic means to emulate cellular functions and behaviors. However, artificial cell strategies encounter difficulties in fully replicating the intricate functionalities exhibited by living cells while also grappling with the complexities associated with design implementation for clinical translation purposes. The convergence of disciplines has facilitated the reform of living cells through a range of approaches, including chemical-, biological-, genetic-, and materials-based methods. These techniques can be employed to impart specific functions to cells or enhance the efficacy of therapy. For example, cells are engineered through gene transduction, surface modifications, endocytosis of drugs as delivery systems, and membrane fusion. The concept of engineered cells presents a promising avenue for enhancing control over living cells, thereby enhancing therapeutic efficacy while concurrently mitigating toxic side effects and ultimately facilitating the realization of precision medicine.In this Account, we present a comprehensive overview of our recent research advancements in the field of engineered cells. Our work involves the application of biological or chemical engineering techniques to manipulate endogenous cells for therapeutics or drug delivery purposes. For instance, to avoid the laborious process of isolating, modifying, and expanding engineered cells in vitro, we proposed the concept of in situ engineered cells. By applying a hydrogel loaded with nanoparticles carrying edited chimeric antigen receptor (CAR) plasmids within the postoperative cavity of glioma, we successfully targeted tumor-associated macrophages for gene editing, leading to effective tumor recurrence inhibition. Furthermore, leveraging platelet's ability to release microparticles upon activation at injury sites, we modified antiprogrammed death 1 (PD-1) antibodies on their surface to suppress postoperative tumor recurrence and provide immunotherapy for inoperable tumors. Similarly, by exploiting bacteria's active tropism toward sites of inflammation and hypoxia, we delivered protein drugs by engineered bacteria to induce cancer cell death through pyroptosis initiation and immunotherapy strategies. In the final section, we summarize our aforementioned research progress while providing an outlook on cancer therapy and the hurdles for clinical translation with potential solutions or future directions based on the concept of engineered cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.