Abstract

By employing the numerically exact multiple Davydov D2 ansatz, we study cavity-manipulated singlet fission that is mediated by polaritonic conical intersections for both one- and two-molecule systems. The population evolution of the TT state and the cavity photons is carefully examined in search for a high fission efficiency via cavity engineering. Several interesting mechanisms have been uncovered, such as photon-assisted singlet fission, system localization via a displaced photon state, and collective enhancement of the fission efficiency for the two-molecule system. It is also found that the system localization process in the two-molecule system differs substantially from that in the one-molecule system because of the appearance of a novel central polaritonic conical intersection in the two-molecule system. It has been demonstrated that the cavity-controlled singlet fission process can be switched on and off by controlling the average pumping photon number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.