Abstract

The electrical response of graphene-based materials can be tailored under mechanical stress. We report different switching behaviors that take place in mechanically deformed graphene nanoribbons prior to the breakage of the junction. By performing tight-binding molecular dynamics, the study of structural changes of graphene nanoribbons with different widths is achieved, revealing that carbon chains are the ultimate bridges before the junction breaks. The electronic and transport calculations show that binary on/off states can be switched prior to and during breakage depending on the atomic details of the nanoribbon. This work supports the interpretation of recent experiments on nonvolatile memory element engineering based on graphene break junctions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.