Abstract

Limitation of 3D construction ability, complex preparation processes and developing customer demands have promoted people to find low-cost, rapid prototyping, and simple operation methods to produce novel functional devices in the near future. Among various techniques, 3D-printed technology is a promising candidate for the fabrication of biosensors and biomedical detection devices with a wide variety of potential applications. This review offers four important 3D printing techniques for biosensors and biomedical detection devices and their applications. The principle and printing process of 3D-printed technologies will be generalized, and the printing performance of many 3D printers will be compared. Despite the resolution restrictions of 3D-printed, these technologies have already shown promising applications in many biosensors and biomedical detection devices, such as 3D-printed microfluidic devices, 3D-printed optical devices, 3D-printed electrochemical devices, and 3D-printed integrated devices. Some of the most representative examples will also be discussed here, demonstrating that 3D-printed technology can rationally design biosensors and biomedical detection devices and achieve important applications in microfluidic, optical, electrochemical, and integrated devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call