Abstract

Human pluripotent stem cells (hPSCs) are capable of differentiating into any type of somatic cell, a characteristic that imparts significant therapeutic potential. Human embryonic stem cells and induced pluripotent stem cells are types of hPSCs. Although hPSCs have high therapeutic potential, their clinical relevance is limited by the requirement for animal feeder layers, which maintain their pluripotency and self-renewal. hPSCs grown on animal feeder cells are at high risk for pathogen contamination and can be affected by the immunogenicity of the feeder layer. The presence of animal feeder cells also limits the scalability of hPSCs in culture because of the high cost of culturing and batch-to-batch variations. Therefore, development of feeder-free systems is imperative for robust, lower-cost, xeno-free, scalable culture of hPSCs. Biomaterials engineered with bioactive molecules such as adhesion proteins and extracellular matrix proteins, or synthetic materials such as peptides and polymers, may provide alternative substrates to animal feeder cells. This article reviews biomaterial-based, feeder-free systems for hPSC growth and maintenance, which provide clinically relevant alternatives to feeder cell systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.