Abstract

Ovarian cancer is the most lethal gynecological malignancy. Most patients are diagnosed at an advanced stage with widespread peritoneal dissemination and ascites. Bispecific T-cell engagers (BiTEs) have demonstrated impressive antitumor efficacy in hematological malignancies, but the clinical potency is limited by their short half-life, inconvenient continuous intravenous infusion, and severe toxicity at relevant therapeutic levels in solid tumors. To address these critical issues, the design and engineering of alendronate calcium (CaALN) based gene-delivery system is reported to express therapeutic level of BiTE (HER2×CD3) for efficient ovarian cancer immunotherapy. Controllable construction of CaALN nanosphere and nanoneedle is achieved by the simple and green coordination reactions that the distinct nanoneedle-like alendronate calcium (CaALN-N) with a high aspect ratio enabled efficient gene delivery to the peritoneum without system in vivo toxicity. Especially, CaALN-N induced apoptosis of SKOV3-luc cell via down-regulation of HER2 signaling pathway and synergized with HER2×CD3 to generate high antitumor response. In vivo administration of CaALN-N/minicircle DNA encoding HER2×CD3 (MC-HER2×CD3) produces sustained therapeutic levels of BiTE and suppresses tumor growth in a human ovarian cancer xenograft model. Collectively, the engineered alendronate calcium nanoneedle represents a bifunctional gene delivery platform for the efficient and synergistic treatment of ovarian cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call