Abstract

The deep cement mixing (DCM) is used to improve the capacity and reduce the settlement of the soft ground by forming cemented clay columns. The investigation on the mechanical behaviour of the DCM samples is limited to either laboratory-prepared samples or in-situ samples under unconfined compression. In this study, a series of drained and undrained triaxial shearing tests was performed on the in-situ cored DCM samples with high cement content to assess their mechanical behaviours. It is found that the drainage condition affects significantly the stiffness, peak and residual strengths of the DCM samples, which is mainly due to the state of excess pore water pressure at different strain levels, i.e. being positive before the peak deviatoric stress and negative after the peak deviatoric stress, in the undrained tests. The slope of the failure envelope changes obviously with the confining pressures, being steeper at lower stress levels and flatter at higher stress levels. The strength parameters, effective cohesion and friction angle obtained from lower stress levels (c′0 and φ′0) are 400 kPa and 58°, respectively, which are deemed to be true for design in most DCM applications where the in-situ stress levels are normally at lower values of 50–200 kPa. Additionally, the computed tomography (CT) scanning system was adopted to visualize the internal structures of DCM samples. It is found that the clay pockets existing inside the DCM samples due to uneven mixing affect markedly their stress-strain behaviour, which is one of the main reasons for the high variability of the DCM samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call