Abstract

BackgroundWe investigated the possibility of executing DNA-based computation in living cells by engineering Escherichia coli to address a classic mathematical puzzle called the Burnt Pancake Problem (BPP). The BPP is solved by sorting a stack of distinct objects (pancakes) into proper order and orientation using the minimum number of manipulations. Each manipulation reverses the order and orientation of one or more adjacent objects in the stack. We have designed a system that uses site-specific DNA recombination to mediate inversions of genetic elements that represent pancakes within plasmid DNA.ResultsInversions (or "flips") of the DNA fragment pancakes are driven by the Salmonella typhimurium Hin/hix DNA recombinase system that we reconstituted as a collection of modular genetic elements for use in E. coli. Our system sorts DNA segments by inversions to produce different permutations of a promoter and a tetracycline resistance coding region; E. coli cells become antibiotic resistant when the segments are properly sorted. Hin recombinase can mediate all possible inversion operations on adjacent flippable DNA fragments. Mathematical modeling predicts that the system reaches equilibrium after very few flips, where equal numbers of permutations are randomly sorted and unsorted. Semiquantitative PCR analysis of in vivo flipping suggests that inversion products accumulate on a time scale of hours or days rather than minutes.ConclusionThe Hin/hix system is a proof-of-concept demonstration of in vivo computation with the potential to be scaled up to accommodate larger and more challenging problems. Hin/hix may provide a flexible new tool for manipulating transgenic DNA in vivo.

Highlights

  • We investigated the possibility of executing DNA-based computation in living cells by engineering Escherichia coli to address a classic mathematical puzzle called the Burnt Pancake Problem (BPP)

  • We have demonstrated that a modified Hin/hix DNA recombination system can be used in vivo to manipulate at least two adjacent hixC-flanked DNA segments; HinLVA and hixC are sufficient for DNA inversion activity

  • The recombinational enhancer (RE) is not required, it may play some role in preventing aberrant flips that lead to plasmid knotting [23] and subsequent plasmid loss [24]

Read more

Summary

Introduction

We investigated the possibility of executing DNA-based computation in living cells by engineering Escherichia coli to address a classic mathematical puzzle called the Burnt Pancake Problem (BPP). The BPP is solved by sorting a stack of distinct objects (pancakes) into proper order and orientation using the minimum number of manipulations. In order to demonstrate the feasibility of in vivo computing, we programmed Escherichia coli to address a classic mathematical challenge called the Burnt Pancake Problem (BPP) [5]. The evolutionary distance between syntenic genomes of two organisms is determined by the minimum number of reversals required to sort regions of genes in one organism to match the order and orientation of orthologous genes in the other organism [6,7,8].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call