Abstract
As a vital flavor compound, acetoin is extensively used in dairy products and drinks industry. In this study, Bacillus subtilis was engineered to metabolize glucose and xylose as substrates for acetoin production. Initially, gene araE from B. subtilis, encoding the xylose transport protein AraE, was placed under the control of the constitutive promoter P43 for over-expression. Batch cultures showed that 10g/L xylose was depleted completely in 32h. Subsequently, genes xylA and xylB from Escherichia coli, encoding xylose isomerase and xylulokinase respectively, were introduced into B. subtilis, and the recombinant turned out to assimilate glucose and xylose without preference. In shake-flask fermentations, 5.5g/L acetoin with a yield of 0.70mol(molsugar)−1 was obtained by the optimum strain BSUL13 under microaerobic conditions, which offered a metabolic engineering strategy on engineering microbe as cell factory for the production of high-valued chemicals from renewable resource.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.