Abstract

Treatment of complex bone defects in which vascular supply is insufficient is still a challenge. To overcome the limitations from autologous grafts, a sheep model has been established recently, which is characterized by the development of an independent axial vascularization of a bioartificial construct, permitting microsurgical transplantation. To engineer independently axially vascularized bone tissue in the sheep arteriovenous (AV)-loop model, mesenchymal stem cells (MSCs), without and in combination with recombinant human bone morphogenetic protein-2 (rhBMP-2), were harvested and directly autotransplanted in combination with β-tricalcium phosphate-hydroxyapatite (β-TCP-HA) granules into sheep in this study. After explantation after 12 weeks, histological and immunohistochemical evaluation revealed newly formed bone in both groups. An increased amount of bone area was obtained using directly autotransplanted MSCs with rhBMP-2 stimulation. Osteoblastic and osteoclastic cells were detected adjacent to the newly formed bone, revealing an active bone remodelling process. Directly autotransplanted MSCs can be found close to the β-TCP-HA granules and are contributing to bone formation. Over time, magnetic resonance imaging (MRI) and micro-computed tomography (μCT) imaging confirmed the dense vascularization arising from the AV-loop. This study shows de novo engineering of independently axially vascularized transplantable bone tissue in clinically significant amounts, using directly autotransplanted MSCs and rhBMP-2 stimulation in about 12 weeks in the sheep AV-loop model. This strategy of engineering vascularized transplantable bone tissue could be possibly transferred to the clinic in the future in order to augment current reconstructive strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.