Abstract
In this study, a nanocomposite coating composed of polydopamine, functionalized poly(3,4-ethylenedioxythiophene) (PEDOT), and silver nanoparticles (AgNPs) was synthesized through layer-by-layer deposition. Biomimitic polydopamine and hydroxyl-functionalized PEDOT were used to enhance the adhesion strength. The deposition of PEDOT functionalized with zwitterionic phosphorylcholine can contribute to the antifouling property. After immersion in the AgNO3 solution, Ag+ ions were adsorbed on PEDOT films and further reduced to form AgNPs spontaneously, which conferred antibacterial properties on these nanocomposite films. Escherichia coli and Streptococcus mutans were chosen to represent two common Gram-negative and Gram-positive oral pathogens. We further conducted inductively coupled plasma mass spectrometry to confirm that the Ag+ ions released from these nanocomposite films did not exert adverse effects on the human body. These results suggested that, when applied to stainless steel orthodontic appliances, these durable antifouling and antibacterial coatings may be useful for avoiding bacterial infection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.