Abstract
Naturally occurring fluorescent proteins (FPs) cloned from marine organisms often suffer from many drawbacks for cell biology applications, including poor folding efficiency at 37 °C, slow chromophore formation and obligatory quaternary structure. Many of these drawbacks can be minimized or eliminated by using protein engineering and directed evolution, resulting in superior probes for use in live-cell fluorescence microscopy. In this protocol, we provide methods for engineering a monomeric FP, for enhancing its brightness by directed evolution, and for thoroughly characterizing the optimized variant. Variations on this procedure can be used to select for many other desirable features, such as a red-shifted emission spectrum or enhanced photostability. Although the length of the procedure is dependent on the degree of optimization desired, the basic steps can be accomplished in 4-6 weeks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.