Abstract

(R)-selective transaminases show promise as catalysts for the asymmetric synthesis of chiral amines, which are building blocks of various small molecule drugs. However, their application is limited by poor substrate acceptance and low catalytic efficiency. Here, a potential (R)-selective transaminase from Fodinicurvata sediminis (FsTA) was identified through a substrate truncating strategy, and used as starting point for enzyme engineering toward catalysis of 4-hydroxy-2-butanone, a substrate that poses challenges in catalysis. Molecular docking and dynamics simulations revealed Y90 as the key residue responsible for poor substrate binding. Starting from the variant (Y90F, mut1) with initial activity, FsTA was systematically modified to improve substrate-binding through active site reshaping and consensus sequence strategy, yielding three variants (H30R, V152K, and Y156F) with improved activity. A quadruple mutation variant H30R/Y90F/V152K/Y156F (mut4) was also found to show a 7.95-fold greater catalytic efficiency (kcat/KM) than the initial variant mut1. Furthermore, mut4 also enhanced the thermostability of enzyme significantly, with the Tm value increasing by 10 °C. This variant also exhibited significantly improved activity toward a series of ketones that are either not accepted or poorly accepted by the wild-type. This study provides a basis for the rational design of an active to creating variants that can accommodate novel substrates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.