Abstract

Tunnel layer passivated contact technology is already highly efficient in case of selective electron extraction but not as efficient in case of selective hole extraction. Thus far, SiOx/p+-poly-Si contacts have resulted only in efficiencies above ~20.1% for rear-side deployed hole selective contacts. We investigate if hole extraction selectivity can be further improved by substituting the ‘conventionally’ used SiOx tunnel layer exhibiting moderate or even high positive fixed charge density by AlOx tunnel layers, exhibiting high negative fixed charge density. The merits of using atomic layer deposited ultrathin AlOx tunnel layers are investigated and compared with wet chemically formed SiOx tunnel layers to form AlOx/p+-poly-Si and SiOx/p+-poly-Si hole selective passivated contacts respectively. The AlOx thickness (0.13–2 nm) and its thermal budget including annealing time, temperature and ambient were varied. The quality of the resulting AlOx/p+-poly-Si passivated contacts was determined by measuring the recombination current density (Jc) and the effective contact resistivity (ρc). Finally, using the measured values of Jc and ρc, we predict the efficiency potential and selectivity of the passivated contact using Brendel's model. We show that for 425 °C annealed AlOx samples prior to poly-Si capping, there is an improvement in passivation quality due to the high negative AlOx interface charge, which forms only for “thick” tunnel layers (≥1.5 nm). However, after high-temperature poly-Si capping, enhanced boron in-diffusion and charge compensation are degrading the overall passivation quality of “thick” AlOx/p+-poly-Si passivated contacts. The best AlOx/p+-poly-Si passivated contacts use ultra-thin AlOx tunnel layers (efficiency potential of 26.9%), which is only marginally better than the SiOx reference samples, but still improves hole selectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.